2,065 research outputs found

    Learning and generation of long-range correlated sequences

    Full text link
    We study the capability to learn and to generate long-range, power-law correlated sequences by a fully connected asymmetric network. The focus is set on the ability of neural networks to extract statistical features from a sequence. We demonstrate that the average power-law behavior is learnable, namely, the sequence generated by the trained network obeys the same statistical behavior. The interplay between a correlated weight matrix and the sequence generated by such a network is explored. A weight matrix with a power-law correlation function along the vertical direction, gives rise to a sequence with a similar statistical behavior.Comment: 5 pages, 3 figures, accepted for publication in Physical Review

    Robust chaos generation by a perceptron

    Full text link
    The properties of time series generated by a perceptron with monotonic and non-monotonic transfer function, where the next input vector is determined from past output values, are examined. Analysis of the parameter space reveals the following main finding: a perceptron with a monotonic function can produce fragile chaos only whereas a non-monotonic function can generate robust chaos as well. For non-monotonic functions, the dimension of the attractor can be controlled monotonically by tuning a natural parameter in the model.Comment: 7 pages, 5 figures (reduced quality), accepted for publication in EuroPhysics Letter

    Dynamics of Interacting Neural Networks

    Full text link
    The dynamics of interacting perceptrons is solved analytically. For a directed flow of information the system runs into a state which has a higher symmetry than the topology of the model. A symmetry breaking phase transition is found with increasing learning rate. In addition it is shown that a system of interacting perceptrons which is trained on the history of its minority decisions develops a good strategy for the problem of adaptive competition known as the Bar Problem or Minority Game.Comment: 9 pages, 3 figures; typos corrected, content reorganize

    Secure and linear cryptosystems using error-correcting codes

    Full text link
    A public-key cryptosystem, digital signature and authentication procedures based on a Gallager-type parity-check error-correcting code are presented. The complexity of the encryption and the decryption processes scale linearly with the size of the plaintext Alice sends to Bob. The public-key is pre-corrupted by Bob, whereas a private-noise added by Alice to a given fraction of the ciphertext of each encrypted plaintext serves to increase the secure channel and is the cornerstone for digital signatures and authentication. Various scenarios are discussed including the possible actions of the opponent Oscar as an eavesdropper or as a disruptor

    The Entropy of a Binary Hidden Markov Process

    Full text link
    The entropy of a binary symmetric Hidden Markov Process is calculated as an expansion in the noise parameter epsilon. We map the problem onto a one-dimensional Ising model in a large field of random signs and calculate the expansion coefficients up to second order in epsilon. Using a conjecture we extend the calculation to 11th order and discuss the convergence of the resulting series

    Secure exchange of information by synchronization of neural networks

    Full text link
    A connection between the theory of neural networks and cryptography is presented. A new phenomenon, namely synchronization of neural networks is leading to a new method of exchange of secret messages. Numerical simulations show that two artificial networks being trained by Hebbian learning rule on their mutual outputs develop an antiparallel state of their synaptic weights. The synchronized weights are used to construct an ephemeral key exchange protocol for a secure transmission of secret data. It is shown that an opponent who knows the protocol and all details of any transmission of the data has no chance to decrypt the secret message, since tracking the weights is a hard problem compared to synchronization. The complexity of the generation of the secure channel is linear with the size of the network.Comment: 11 pages, 5 figure

    Statistical mechanical aspects of joint source-channel coding

    Full text link
    An MN-Gallager Code over Galois fields, qq, based on the Dynamical Block Posterior probabilities (DBP) for messages with a given set of autocorrelations is presented with the following main results: (a) for a binary symmetric channel the threshold, fcf_c, is extrapolated for infinite messages using the scaling relation for the median convergence time, tmed1/(fcf)t_{med} \propto 1/(f_c-f); (b) a degradation in the threshold is observed as the correlations are enhanced; (c) for a given set of autocorrelations the performance is enhanced as qq is increased; (d) the efficiency of the DBP joint source-channel coding is slightly better than the standard gzip compression method; (e) for a given entropy, the performance of the DBP algorithm is a function of the decay of the correlation function over large distances.Comment: 6 page
    corecore